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Abstract

Left Ventricular Assist Devices (LVADs) are increas-
ingly used as long-term implantation therapy for advanced
heart failure patients, where candidacy assessment is cru-
cial for successful treatment and recovery. A Deep Learn-
ing system based on Electrocardiogram (ECG) diagnoses
criteria to stratify candidacy is proposed, implementing
multi-model processing, interpretability, and uncertainty
estimation. The approach includes beat segmentation for
single-lead classification, 12-lead analysis, and seman-
tic segmentation, achieving state-of-the-art results on the
classification evaluation of each model, with multilabel av-
erage AUC results of 0.9924, 0.9468, and 0.9956, respec-
tively, presenting a novel approach for LVAD candidacy
assessment, serving as an aid for decision-making.

1. Introduction

A Left Ventricular Assist Device (LVAD) is an im-
plantable device, which is increasingly being used as des-
tination therapy for advanced heart failure management.

Determining the suitability of a patient and the proper
timing for intervention is important for successful LVAD
implantation and patient recovery. Deep Learning tools
that can help assess the severity of the heart’s condition in a
patient can aid the specialist in making the decision. Elec-
trocardiogram (ECG) signals, fundamental tools in cardi-
ology, are proposed as input data for the system.

Deep Learning for ECG classification has been used in
recent years, with Convolutional related architectures still
being the most widely used for this end, and the potential
and need for Interpretability and Uncertainty awareness for
real-world application is evidenced [1].

This work focuses on the candidacy assessment problem
and proposes ECG criteria that are then used to train the
models. It combines three models to get a report that high-
lights information that is useful for the physician. It also
implements interpretability and uncertainty estimation to
increase the trust and applicability of the system.

2. Criteria, Interpretability and Uncer-
tainty

For identification of the ECG diagnoses and the valida-
tion of the proposed criteria, expert input from profession-
als at the Texas Heart Institute was sought. The selected
diagnoses would be most helpful in selecting LVAD can-
didates, by discriminating problems - often related to the
left ventricle - while at the same time looking for potential
right heart problems (up to 53% of LVAD patients have
right heart failure after implantation [2]).

The proposed ECG diagnosis criteria are divided in
three groups. Major criteria proposed are Left Bundle
Branch Block (LBBB), Premature Ventricular Contraction
(PVC), Left Ventricular Hypertrophy (LVH), Anterior My-
ocardial Infarction (AMI) and Congestive Heart Failure
(CHF), as well as QRS duration, which has a risk/relevance
for candidacy that increases linearly starting at a duration
of 110 miliseconds. Minor criteria are Inferior Myocardial
Infarction (IMI) and Atrioventricular Block (AVB); and
potential contraindications relate mostly to problems with
the right chambers of the heart, and comprise Right Ven-
tricular Hypertrophy (RVH), Right Bundle Branch Block
(RBBB) and Right Atrial Enlargement/Overload (RAE).
The output is the estimated probability of having each one
of these diagnoses. No single numerical score is proposed
as a final measure of candidacy, rather a more informative
report is proposed.

Interpretability in healthcare applications is important
for increasing trust and model adoption. Uncertainty esti-
mation is also important [3]. If an observation is classified
as having high uncertainty, it is noted in the output report
to be considered further by the physician.

3. System for LVAD Candidate Assess-
ment From ECG

3.1. System overview

The proposed system consists of 3 main parts: i) Single-
lead classifier, ii) 12 lead classifier, and iii) Semantic seg-
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mentation classifier. All datasets used were publicly avail-
able datasets found on Physionet [4]. More details about
the datasets and the processing of the data are in Sec-
tion 4. The single lead and 12-lead classifiers output pre-
dicted probabilities, shown in the report as probability
bins: 0-30%: Not detected, 30-45%: Cannot rule out, 45-
60%:Consider, 60-75%:Possible and 75-100%:Consistent
with. This choice was taken to provide a more flexible ap-
proach to decision making, by having the outputs of the
system in a more nuanced manner, similar to real-world
annotations that are often not binary. Interpretability re-
sults from Grad-CAM are available for the 12-lead classi-
fier, and uncertainty awareness results from Monte Carlo
Dropout are shown in the output report.

3.2. Single –lead model

Some of the diagnoses of interest can be correctly classi-
fied from a single lead, and high quality datasets are avail-
able with beat-level annotation for them. The model used
for the single lead classifier is based on a 1D Convolutional
Neural Network with residual blocks.

Figure 1. Single lead ECG classification model. Consists
of five levels with 1D Convolutional layers, max-pooling,
dropout and skip connections, followed by fully connected
layers and sigmoid activation.

Fig. 1 shows the model, which consists of 5 sections,
each with 1D-convolutional, max-pooling, dropout layers
and residual connections. After the last section, three fully
connected layers are added for classification followed by
a final sigmoid activation unit. After using Keras Tuner
to find the best combination of hyperparameters, a model
with 64 filters, Kernel size of 6, MaxPool size of 4, and
48/80 units in the last two dense layers was used.

Training was performed using the Adam optimizer, with
a learning rate scheduled with an exponential decay rate
(0.0001 initial learning rate, 0.75 rate), with callback mon-
itoring validation loss, for 30 epochs. The loss function
employed was Binary Cross-entropy.

3.3. 12 lead model

Some ECG diagnoses are better classified using more
than a single lead. Furthermore, some datasets had ECGs
belonging to the diagnoses of interest with data for all 12

leads, which made it a good addition to the system. Re-
garding its architecture, the model takes as its basis the
single-lead classifier, adding a sixth level of depth, still
with 1D-convolutional layers as the main operation, im-
plementing one such group of layers for every input chan-
nel, i.e. every lead. After concatenation of the extracted
features of the 12 channels, Dense layers are added along
with a final sigmoid activation for multilabel classification.

Training was performed using the Adam optimizer, with
a learning rate scheduled with an exponential decay rate
(0.0001 initial learning rate, 0.75 rate), with callback mon-
itoring validation loss, for 15 epochs. The loss function
employed was Binary Cross-entropy.

3.4. Semantic segmentation model

For semantic segmentation of the ECG signals, used
in this system to determine the QRS average duration
in milliseconds, the U-net model first proposed in [5]
was adapted to process the 1-D signals of each ECG
lead. It comprises 5 levels of grouped max-pooling, 1D-
convolutional and dropout layers and performs upsampling
with 1D-transposed convolutional layers. It receives as in-
put a single lead waveform of 1000 samples and outputs a
segmentation mask of background, P segment, QRS seg-
ment and T segment for each of the 1000 samples from the
last Softmax activation layer.

Training was performed using the Adam optimizer, with
a learning rate scheduled with an exponential decay rate
(0.0001 initial learning rate, 0.75 rate), with callback mon-
itoring validation loss for 85 epochs with a batch size of 64.
Categorical Cross-entropy was used as the loss function.

4. Design And Implementation

4.1. Datasets

Public ECG datasets were selected from Physionet [4],
looking for the diagnoses of interest. To increase the ro-
bustness of the model each diagnosis of interest had obser-
vations from at least two datasets included in the training
of the models. The datasets used in this work are the fol-
lowing:
• MIT-BIH Arrhythmia Database: Normal, Other beat,
LBBB, RBBB, PVC
• MIT-BIH Supraventricular Arrhythmia Database: Nor-
mal, Other beat, PVC
• PTB Diagnostic ECG Database: Normal, AMI, IMI,
CHF
• PTB-XL: Normal, LBBB, RBBB, LVH, RVH, AVB,
RAE/RAO, AMI, IMI
• Lobachevsky University Electrocardiography Database
(LUDB): Normal, LBBB, RBBB, LVH, RVH, AVB, RAE,
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PVC, AMI, QRS duration (semantic segmentation of P,
QRS, T segments)
• BIDMC Congestive Heart Failure Database: CHF

Training, validation, and test split sets were performed,
in an approximately 0.7/0.2/0.1 split for the single-lead and
semantic segmentation models, and a 0.8/0.1/0.1 split for
the 12-lead model. In all cases, the split was stratified,
keeping the same ratio among all classes in each subset of
the data. In all cases, an inter-patient paradigm has been
used, i.e., the ECG data (the heartbeats) of a patient can
only be used in one of the training, validation, or test sets
to avoid data leakage. For two minority classes (RVH and
RAE) augmentation was performed doing a slight stretch
that expands the signal in the time domain (with a random
factor 1.05 to 1.3); and scaling (by a random factor be-
tween -0.875 and 1.125). The augmentations have been
applied only to the 12-lead classifier.

As preprocessing, for the single lead classifier the R-
peaks are detected and the beats segmented. For both sin-
gle and 12-lead classifiers, denoising with a 4th order But-
terworth high pass filter and wavelet filtering is used. For
the single lead and semantic segmentation models, min-
max normalization was applied.

4.2. Model Evaluation Results

The three models were evaluated following the recom-
mended metrics for each case. Precision, Recall, F-1
Score, and AUC per class are evaluated. The obtained
results for the three models are shown in Table 1. Ad-
ditionally, the Intersection-Over-Union (IoU) score is cal-
culated for the Semantic Segmentation model, taking the
ratio of lengths instead of areas, measuring the overlap be-
tween the predicted and ground truth regions. The obtained
IoU scores from the test set with the semantic segmenta-
tion model are 0.902, 0.741, 0.867, and 0.786 for Other
(Background), P, QRS, and T segments respectively. The
weighted IoU score is 0.871.

Figure 2. Saliency map showing the weights on the last
convolutional layer of the top two leads (Lead II and Lead
aVL) for an observation with LBBB and AMI.

Table 1. Precision, Recall, F-1 and AUC results for the
Single-lead, 12-lead and Semantic Segmentation models.

Class Precision Recall F1-score AUC
Single Lead Classifier

Normal 0.91 0.99 0.95 0.994
Other 0.97 0.93 0.95 0.997
LBBB 1 1 1 1
RBBB 1 1 1 1
PVC 0.97 0.96 0.97 0.998
CHF 0.99 0.96 0.97 0.989
MI 0.96 0.96 0.96 0.997

12 Lead Classifier
Normal 0.87 0.92 0.90 0.963

LVH 0.74 0.73 0.73 0.959
RBBB 0.90 0.82 0.86 0.988

IMI 0.75 0.78 0.77 0.950
AMI 0.79 0.82 0.80 0.969
AVB 0.52 0.57 0.55 0.956
RVH 0.13 0.83 0.22 0.945

RAO/RAE 0.43 0.50 0.46 0.945
LBBB 0.95 0.86 0.90 0.989

Semantic Segmentation
Other 0.97 0.97 0.97 0.9918

P 0.88 0.90 0.89 0.9972
QRS 0.93 0.94 0.94 0.9990

T 0.90 0.90 0.90 0.9946

4.3. Output Report

Interpretability was implemented with Grad-CAM [6],
applied to the last 1D-convolutional layer of each of the 12
heads of the model, one per input lead. Then the results
are plotted over the 1D signal of the lead being examined
with a heatmap. Fig. 2 shows an example.

As shown in [7], the Monte Carlo (MC) dropout tech-
nique can yield a good approximation of the posterior
probability distribution of a model. This was implemented
in the system and plotted with notched box-plots. The ob-
servation is forward-passed through the model 100 times.
At inference time, the system outputs a report highlighting
the major, minor, and potential contraindication criteria,
along with the saliency maps obtained. The physician can
also inspect the boxplots of the reported criteria of interest,
which also show the estimated uncertainty of the results.
Fig. 3 shows four examples, one of a high candidacy re-
sult (a), a second one of a heart predicted as normal (b),
a third one of a candidate with high potential contraindi-
cation (c), and the last one is an example of a high uncer-
tainty observation (d). The rest of the report of a) reads:
Major - Consistent with LBBB, Possible AMI, QRS dura-
tion 167ms. Minor - Cannot rule out AVB. Report of b)
reads: Major - Consistent with NORMAL, QRS duration
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Figure 3. Example boxplots, showing the reported proba-
bility of relevant diagnoses for each case.

112.5 ms (the next predicted probability is shown for com-
parison, AVB with low value). Report of c) reads: Major
- Cannot rule out AMI, QRS duration 128.6 ms. Minor -
Possile IMI, Consider AVB. Potential Contraindications -
Consistent with RBBB. Report of d) reads: Major - Con-
sider NORMAL (high uncertainty), Consider LVH.

5. Conclusions

This work presents the first step in a novel approach to
assessing candidacy for LVAD implantation directly from
physiological signals, in this case from the ECG.

A multi-model Deep Learning system was built, achiev-
ing state-of-the-art results on each model and combining
the predictions into a report.

The importance of having Interpretability was con-
firmed, and a way of showing per lead and segment im-
portance has been implemented.

To increase trust in the model, uncertainty calcula-
tion was implemented, reporting graphically the predicted
probability and uncertainty.

5.1. Limitations and Future Work

ECG alone does not convey the full information that
would be desirable to make a complete assessment of a pa-
tient for the suitability of LVAD implantation. The use of
clinical data to complement the models will be explored in
this sense. The current work used a single ECG snapshot
for each patient; having ECG data for patients at different

points in time would help establish progression markers
for the diagnoses of interest and improve the system.

In future work, models to estimate Left Ventricular Ejec-
tion Fraction will be developed, and the system will be val-
idated with the ECGs of LVAD patients.

Measures to improve the classification results for rare
diagnoses will be explored, such as the addition of hand-
crafted features that can be calculated from Semantic Seg-
mentation results.
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